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Abstract The interest and relevance of symmetry methods as a predictive and systematic methodology in the
continuum mechanics of materials is analyzed, relying on a classification of the inherent aspects in terms of the
direct, extended direct, and inverse methods. Although being interrelated, these three problems each have a specific
argumentation which is separately exposed in the present contribution. The direct problem of finding invariants
associated with a given constitutive law for materials, including dissipation, is first envisaged. The abstract formu-
lation of constitutive laws in terms of the state laws and a dissipation potential expressing the evolution of internal
state variables is considered, in the framework of irreversible thermodynamics. It is shown that a specific choice of
the components of the symmetry vector acting in the space of independent and dependent variables leads to a local
invariance condition of the constitutive law fully equivalent to the variational symmetry condition using the rate
of the internal energy density. As a specific situation involving this methodology, a time–temperature equivalence
principle of polymers is obtained from the requirement of group invariance of the field equations. A validation of
this invariance principle is given by a comparison of the modelled master response and the master curve constructed
from a set of experimental results at various temperatures. The extended direct method is next presented as a gen-
eralization of the direct method, in the sense that a classification of constitutive functions modelling the material
behavior is achieved via a symmetry analysis. In the third part of the paper, the inverse problem of constructing
a material’s constitutive law exploiting a postulated Lie-group structure is exposed. A constitutive model is then
identified which satisfies the symmetries exhibited by the experimental data.
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104 J.-F. Ganghoffer et al.

1 Introduction

The power of Lie-group symmetry analysis has been extensively used to date in a rather mathematical sense, essen-
tially to support the finding of analytic solutions to partial differential equations (see [1–3] for a body or results). For
a given DE problem, one can algorithmically calculate its admitted point symmetries—transformations of dependent
and independent variables that map a problem into itself (e.g. [4–7]). Knowledge of admitted symmetries allows one
to construct mappings relating DE systems, find out whether or not a given nonlinear DE system can be mapped into
a linear system by an invertible transformation, and find exact (group-invariant or symmetry-generated) solutions.
Lie-group analysis is of further interest in setting up numerical schemes that preserve the group properties of an
initial boundary-value problem (BVP); see [8].

In the context of continuum solid mechanics, Lie groups have been applied to solve the Navier and the Lame
equations (see [9–11]), or, in a similar spirit and extending this view to dissipation, to partially solve the ideal
plasticity equation ([12,13]). The concept of nonlocal symmetries allows one to construct novel BVP in continuum
mechanics (and group-invariant solutions), involving potential variables, thereby extending the classical picture
relying on the traditional Lagrangian and Eulerian viewpoints, [14]. The field of Eshelbian Mechanics (in honour
of the work of Eshelby), otherwise coined Configurational Mechanics, relies on translational symmetries in the
so-called material space, for the writing of field equations in terms of Eshelby stresses. Those symmetries extended
to rotations and dilatations have been intensively used to construct the well-known J-integrals; see [15–18].

In contrast to this, the possible interest of using Lie symmetries in the mechanics of materials has clearly not
been explored so far to the same extent. The focus in this contribution is on the involvement of Lie groups as a
new predictive and systematic methodology to obtain invariance properties of materials: more precisely, from the
knowledge of the constitutive law of a given material, the ability of Lie symmetries to predict its response under
various control conditions (this terminology will be defined later on) will be assessed. The interactions between
those fields can be summarized in terms of the following three generic interrelated problems:

• The Direct Method (abbreviation DM) is exposed in detail in Sect. 2 and can be summarized as follows: for a
given material and a given constitutive model, which can be written in a physical framework such as irreversible
thermodynamics, find the symmetries induced by the postulated constitutive law. This methodology has been
followed historically in the literature by several authors; see e.g. [1–3]. In the context of continuum solid mechan-
ics, this approach may be especially promising for dissipative materials for which the constitutive law includes
the state laws for the observable variables (such as stress and strain) and the internal state laws expressing the
evolution of the internal variables. The invariants associated with those symmetries may then be calculated, and
used in a practical way to synthesize the material’s response into so-called master curves, revealing the variation
of the material’s response when some control parameters, such as temperature or strain rate, vary;

• The Extended Direct Method (abbreviated as EDM), also exposed in Sect. 2, can be stated as follows: as an exten-
sion of the direct problem, find and classify the symmetries in a given boundary-value problem involving some
initially unspecified constitutive functions (and also possibly loading functions). This approach has been recently
followed in nonlinear elasticity [14]; invariants can also be constructed from the obtained symmetries. Indeed,
the use of nonlocal variables leads further to novel and more general formulations in Continuum Mechanics;

• The Inverse Method (abbreviated as IM) is presented in Sect. 3, and can be summarized as follows: relying on
experimental data obtained from a set of adequate mechanical testings, use the postulated group structure of
those data to construct a possible material’s constitutive law via the Lie symmetry analysis, in terms of initially
unknown constitutive functions. The Lie symmetries can here be viewed as an interpolation method allowing to
continuously link experimental data, but relying on a limited, well chosen, set of experiments.

The inverse problem is clearly tied to the direct problem: once a possible material constitutive law has been con-
structed, the material’s response can be predicted (outside the range of variation of the control variables involved
in the measurements) for varying experimental conditions, hence using Lie symmetries inherent to the obtained
constitutive law as an extrapolation technique. Observe that this methodology of exploiting Lie symmetries can
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Relevance of symmetry methods in mechanics of materials 105

be potentially applied to a wide class of materials, including polymers, metals, ceramics, metallic and polymeric
foams, and constitutive laws, such as nonlinear elasticity, viscoelasticity and viscoplasticity.

The following conventions will be adopted in the sequel: vectors and matrices are denoted by bold-face letters.
The total derivative of a functional expression, e.g. u(t, f (t)), with respect to time t will be written as u̇ = ∂u

∂t + ∂u
∂ f ḟ ,

accounting for both the explicit and the implicit dependence of the functional u upon time.
In order to clarify the presentation of the methodology at the heart of the present work, the exposition of ideas

related to the three presented methods will be summarized in separate diagrams synthesizing the different logical
steps of each method in terms of phases. The Direct, Inverse, and Extended Direct Methods will be conveniently
abbreviated as DM, IM, and EDM, respectively; for a given approach, each phase will accordingly be designated
by the letter P followed by a number indicating the order in the phase sequence, e.g. DM-P1 refers to the first phase
of the Direct Method.

2 The direct method

The DM algorithm is summarized in the diagram of Fig. 1. The associated constitutive model accounted for in the
present illustration is based on a thermodynamic approach (Phase DM-P1), a reminder of which is given next.

2.1 Construction of the constitutive law: case of TIP

In mechanics, constitutive laws for dissipative materials are generally written under the umbrella of the thermody-
namics of irreversible processes (TIP), adopting one of its possible variants [19]. Relying on Callen’s axiomatic,

P1.  THERMODYNAMICAL FRAMEWORK
FOR CONTINUOUS MEDIA

constitutive equations

conservation laws
PDE’s

P2.  SYMMETRY ANALYSIS (LIE-GROUPS THEORY)

symmetry groups of
constitutuve equations

variational symmetry groups

master curves

equivalence principles

P5.  IDENTIFICATION OF PARAMETERS

P4.  EXPERIMENTAL DATA

physical properties

dependent & independent variables

material behavior

P3.  EXPERIMENTS

controlled loading paths

(selected controlled and 
                           observed state variables)

Fig. 1 Diagram associated with the Direct Method
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106 J.-F. Ganghoffer et al.

[20], and a generalization of De Donder’s thermodynamics, let the internal potential energy E( y, z) characteriz-
ing the medium, which depends on a set of extensive variables y = (S, V ε, Nk . . .), where S, V ε, and Nk are,
respectively, the entropy, the volume-weighted deformation, and the number of moles of the kth species. Those last
variables are identified with a set of internal variables z describing the irreversible evolution of the microstructure
(such as plasticity, viscoplasticity, and damage). The thermodynamical system is a finite volume V with boundary
∂V of a solid continuum body. The extensity property of E is expressed as

E(λ y, λz) = λE( y, z). (1)

Taking the derivative of the previous equation with respect to λ at λ = 1, one obtains the Euler relation in the
form of the Gibbs relation

E( y, z) = Y( y, z) · y − A( y, z) · z (2)

satisfied by the internal energy E( y, z), with Y = E, y the intensive variables (vector) and A = −E,z the generalized
non-equilibrium forces, respectively. The intensive variables are dual with respect to the extensive ones in a ther-
modynamical sense. For example, the Cauchy stress, viz. the second-order tensor σ , is conjugated to the strain, viz.
the second-order tensor ε. The extensive variables are control variables in the sense that they are the arguments of
the appropriate thermodynamical potential. When the Gibbs relation is accounted for:

dE

dt
( y, z) = Y( y, z) · d y

dt
− A( y, z) · dz

dt
, (3)

the Gibbs–Duhem relation results from the differentiation of (2), viz.

y · dY
dt

− z · dA
dt

= 0. (4)

A total time derivation of the intensive variables Y and A specifies the starting point of the constitutive law of the
present thermodynamic formulation as

Ẏ( y, z) = au( y, z). ẏ + b( y, z) · ż, − Ȧ( y, z) = bT ( y, z) · ẏ + g( y, z) · ż (5)

with au( y, z) = E, y y being the Tisza matrix and b( y, z) = E,z y, g( y, z) = E,zz the coupling and the dissipation
matrices, respectively, [21].

The thermodynamic information as summarized by the state laws given previously has to be completed by the
evolution laws of the internal variables, which in turn have to be incorporated into the previous Lagrangian. In the
more general setting of the theory of irreversible process (abbreviated T.I.P.) or the thermodynamics with inter-
nal variables (abbreviated T.I.V.), one has recourse to the notion of a dissipation potential D, constrained to be a
positive and homogeneous function of degree n in the rate of the internal variables, [19], allowing to express the
thermodynamic forces or affinities A versus the dual internal variable z as

A(z) = ∂ D

∂ ż
. (6)

In the previous relation and in the sequel, one assumes that the thermodynamic affinity includes all dissipative
forces. Using the previous relation results in a dissipation expressed as

� = A · ż = ∂ D(z)
∂ ż

= nD ≥ 0, (7)

by virtue of Euler’s identity for homogeneous functions of degree n (in classical T.I.P., D is taken as homogeneous
of degree two). The previous relation can be inverted to give the rate of the internal variable versus the affinity,
using the Legendre–Fenchel transform, involving the pseudo-potential of dissipation, defined as the conjugate

D∗(A) = sup
A

(A · ż − D( ż)), (8)

where A is restricted to a convex set K , [19]. When D∗(A) is differentiable, the evolution law of the internal
variable z is given by

ż = ∂ D∗(A)

∂ A
. (9)
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Relevance of symmetry methods in mechanics of materials 107

Choosing as a specific model a quadratic and convex pseudo potential of dissipation D∗, one obtains the following
set of independent nonlinear kinetic relations (for a number of N processes)

żk = − zk − zr
k

τk
, k = 1, . . . , N , (10)

considering a spectral decomposition of the dissipative phenomena modelled by internal variables żk . The variables
zr

k represent the value of the internal variable z at its relaxed equilibrium state, for the dissipation mode k; the
relaxed state corresponds to a metastable equilibrium state for which the thermodynamic affinity Ar vanishes. The
distribution of the varying relaxation times therein τk is described from the Prigogine fluctuation theorem, with
the contribution of each mode proportional to the square root of the corresponding relaxation time [21]. Such first-
order kinetic equations are classical in various fields of engineering, with a good illustration in chemistry, whereby
they constitute models for chemical reactions linking the reaction rate with concentrations or pressures of reactants
(only one reactant is involved in a first-order rate equation) and constant parameters, such as rate coefficients.

2.2 Lagrangian formulation of the set of constitutive laws (Phase DM-P1)

A Lagrangian formulation of the previous dissipative constitutive laws is further constructed by the homotopy
formula from the self-adjoint system of PDEs (partial differential equations) (5), accounting for the Gibbs relation
and the Gibbs–Duhem relations (4); see [22,23]:

L = E, y · ẏ + E,z · ż = dE( y, z)
dt

. (11)

This Lagrangian will be coined the thermodynamic Lagrangian below, since it incorporates the thermodynamic
information related to the material, in terms of relations between the extensive control variables and the dual inten-
sive thermodynamic forces, where the generalized coordinates { y, z, ẏ, ż} correspond to the Lagrange variables of
the uniform system. The physical meaning of the obtained result is that the set of internal variables completes the
set of control variables, ensuring the self-adjointness of the constitutive equations, as detailed in [22]. Indeed, the
Maxwell relations for the internal energy potential, viz.

E,yi y j = E,y j yi ; E,yi z j = E,z j yi ; E,zi z j = E,z j zi (12)

imply that the first-order differential form dE evaluated from (2) is exact, i.e., that the integral of dE between two
thermodynamic states ( y1, z1) and ( y2, z2) of the material at times t1 and t2, respectively, is independent of the
path joining them, thus

δE = δ

⎛
⎜⎝

( y2,z2)∫

( y1,z1)

dE

⎞
⎟⎠ = δ

t2∫

t1

dE

dt
dt = 0 (13)

with δ the functional variation. Note that for a different set of control variables, one has to use the adequate potential
(the material time derivative of which being identified with the Lagrangian), constructed as the Legendre–Fenchel
transform of the internal energy. The kinetic information, viz. the set of equations (10) is then incorporated into
the previous thermodynamic Lagrangian via Lagrange multipliers λ = {λk, k = 1, . . . , N }; hence the augmented
Lagrangian, Laug, accounting for both the thermodynamic and the kinetic information inherent in the material’s
constitutive law, can be written as

laug = ė +
N∑

k=1

λk

(
żk + zk − zr

k

τk

)
, (14)

where the internal energy E has been replaced by the internal energy density e, which also satisfies the Maxwell
conditions. The Lagrangian density laug in Eq. 14 is the volumetric density of a Lagrangian Laug, such that

Laug =
∫

V

laugdV . (15)
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108 J.-F. Ganghoffer et al.

The Lagrangian multipliers in laug are akin to thermodynamic affinities dual to the rate of internal variables; hence
the kinetic part of the total Lagrangian thereabove resembles a dissipation potential. The incorporation of the
kinetic laws (10) clearly breaks the symmetry (discrete symmetry) under the time reversal t → −t , since the new
Lagrangian contains irreversible information. As necessary conditions, the set of Lagrangian equations is com-
pletely equivalent to the constitutive equations (5) and the kinetic equations (10). The kinetic evolution equations
(9) have a rich content in terms of continuous symmetries, according to the specific form taken by the relaxation
time therein.

2.3 Symmetry analysis of the augmented Lagrangian (Phase DM-P2)

Relying on the formulated least-action principle of the dissipative constitutive laws, we next exploit the associated
variational symmetries to determine invariance properties of the set of constitutive equations, thereby relying on the
methodology presented in [22–25]. Those symmetries depend upon the thermodynamic and kinetic informations
encapsulated into the two thermodynamic potentials entering the Lagrangian (the energy density and the dissipation
potential). We focus in the sequel (but without lost of generality) on the specific energy e(ε, s, zk), depending on
the strain ε, the specific entropy s, and some specific internal variables zk , k = 1, . . . , N , accounting for internal
dissipative phenomena (related to the microstructure).

The search for the variational symmetries of the Jacobi action built from the augmented Lagrangian amounts
to finding the infinitesimal generators on the (first-order) jet space sustained by the variables {t, ε, s, zk}. As a
concrete illustration, and without loss of generality, considering the time t as the sole independent variable and as
the dependent variables the vector y = ε, s, zk , we express a generator of a symmetry group as

vcont = ξ
∂

∂t
+ φε ∂

∂ε
+ φs ∂

∂s
+ φzk

∂

∂zk
, (16)

where the variations of the dependent variables are given by

δε = µφε; δs = µφs; δzk = µφzk , (17)

with µ the parameter of the group, accounting for the formalism presented in [5]. In Eq. 16, the subscript “cont”
means that only components with respect to control variables are at first introduced. The variations given in (17)
are responsible for the variations of the intensive observable variables δσ , δT , and δAk , obtained from the second
partial derivatives of the potential e. The symmetry group acting on the set of variables {t, ε, s, zk} is automatically
extended to the enlarged set of variables {t, ε, s, zk, σ, T, Ak}: thus, the total vector field, generator of the symme-
tries of the constitutive laws, is decomposed into the sum of the “control” vector field and the “observable” vector
field:

v = vcont + vobs with vobs = φσ ∂

∂σ
+ φT ∂

∂T
+ φAk

∂

∂ Ak
. (18)

The components of the intensive variables of the observable and internal vector fields are given by the structure
of the constitutive law (Eq. 5) for the elementary representative volume element (RVE):

φσ = e,εεφ
ε + e,sεφ

s + e,zkεφ
zk , (19)

φT = e,εsφ
ε + e,ssφ

s + e,zk sφ
zk , (20)

φAi = e,εzi φ
ε + e,szi φ

s + e,zk zi φ
zk . (21)

The components of the vector field vobs are thus completely determined by those of the vector field vcont. Let
us now return to a general situation, and decompose the Lagrangian of Eq. 14 into a thermodynamic and a kinetic
contribution, as

laug = lthermo + lkine (22)
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Relevance of symmetry methods in mechanics of materials 109

with

lthermo = ė and lkine =
N∑

k=1

λk

(
żk + zk − zr

k

τk

)
. (23)

As shown previously, the invariance condition associated with the sole contribution lthermo is automatically veri-
fied; see also [22]. The satisfaction of the Euler–Lagrange equations for ė as a Lagrangian is fully equivalent to
the Maxwell conditions for the second-order partial derivatives of the potential function e. Thus, the invariance
condition of the action integral simplifies to the differential condition involving the sole kinetic information (and
kinetic Lagrangian)

pr(1)vlkine + lkineDivξ = 0, (24)

accounting for the relation Divξ = Dtξ = ξ̇ . In Eq. 24, pr(1)υ denotes the first-order prolongation of the vector
field υ; see e.g. [5].

The connection between the variational symmetry condition and the local symmetry of the field equations is
established next. If v is a variational symmetry for some functional S = ∫

t

∫
V ldV dt , it is also a symmetry of the

corresponding Lagrange equations:

pr(1)vl + lDivξ = 0 ⇒ pr(1)v (E(l)) = 0, (25)

but the converse is generally not true: the set of all variational symmetries denoted by GS is always included into
the set of local symmetries, G�, i.e., GS ⊂ G�. In the present case, we only consider variational symmetries along
the optimal path where the constitutive laws are satisfied. Accounting for the expression of lkine, viz.

lkine =
N∑

k=1

λk

(
żk + zk − zr

k

τk

)
, (26)

we satisfy the condition lkine = 0 along the optimal path; hence the variational symmetry condition becomes

pr(1)vlkine = 0 whenever lkine = 0. (27)

Thanks to the linearity of the prolongation, the previous condition becomes

N∑
k=1

λk

(
pr(1)v

(
żk + zk − zr

k

τk

))
= 0 whenever

N∑
k=1

λk

(
żk + zk − zr

k

τk

)
= 0. (28)

Doing a spectral decomposition of the dissipative mechanisms, the evolutions of the internal variables are mutu-
ally independent, hence the symmetry conditions (28) may be decoupled, resulting in a new set of N independent
symmetry conditions:

pr(1)v

(
żk + zk − zr

k

τk

)
= 0 whenever żk + zk − zr

k

τk
= 0, (29)

which is equivalent to the local symmetry condition. The same condition holds true when using the more general
form of the kinetic equations according to the previously established framework; see the evolution equation (9).
This allows extending the symmetry analysis to more complex dissipative phenomena.

The interest of this formulation in terms of symmetries is linked to the pseudo-potential of dissipation, viz. the
function D∗(A). The vector field selected as the infinitesimal generator of the general invariance condition (27) is
also split into the sum of a control and an observable vector field, with the components of the last contribution com-
pletely expressed from the components of the control vector; this amounts to searching for symmetries in a subset
of the total jet space (with the state laws for the observable variables being automatically satisfied). A classification
of symmetries according to the form of this function is one perspective of the present contribution. As a partial
conclusion, the results of the previous developments show that variational symmetries along the optimal path are
fully equivalent to local symmetries directly computed from the constitutive laws.
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110 J.-F. Ganghoffer et al.

2.4 Invariance properties of the constitutive equations (Phase DM-P2)

The constitutive law for dissipative materials is considered as given in the direct problem; its formulation relies on
the well-established thermodynamics of irreversible processes, involving potential functions for the writing of the
state laws. In this section, the importance of the continuous symmetries inherent in those dissipative constitutive
laws is outlined, especially in view of setting up a predictive methodology allowing to condense the material’s
response into equivalence principles. From the latter, it may be possible to define an equivalent experimental set-up
allowing a gain of time by selecting an optimal set of control variables (e.g. temperature, strain rate). Considering,
for instance, a general internal-variable formulation of inelasticity for generalized standard materials, some of those
symmetries are sometimes being implicitly reflected into the form taken by two essential scalar-valued functions:
the thermodynamic potential (or the pseudo potential of dissipation introduced in (8)) and the dissipation function.
Recall that such a general thermodynamically based material framework has its roots in [26–29]; it has proven its
ability to cover a broad spectrum of models in viscoelasticity, viscoplasticity, plasticity, and also continuum damage
mechanics.

The methodology presented in the previous sections, based on the search for the Lie groups of constitutive laws,
is further used as a systematic tool for the construction of the so-called master curves that condense the information
related to the behavior of a material under varying experimental conditions. Those master curves are a practical
confirmation (in the language of the engineer) of the invariance properties resulting from the symmetry analysis,
and are in line with the representation of experimental data gained from the various measurements done on different
materials with the purpose to validate the calculated symmetries. It is important to underline that experiments enter
into play only in the very last phase of the Direct Method, as a validation of the calculated symmetry groups.

The experimental conditions are defined by the values taken by a set of control parameters such as temperature,
strain rate. Hence, the knowledge of symmetry groups allows a prediction regarding the modification of the mate-
rial’s response when these parameters vary. Thus, starting from a known set of constitutive equations, i.e., a known
expression for e, zr

k and τk , it is a priori possible to compute some symmetries of the behavior by applying the
symmetry condition (29). Due to the equivalence of the local and variational symmetry conditions, a conservation
obtained using Noether’s theorem, viz. DivP = 0, with

Pi =
q∑

k=1

4∑
j=1

ξ j uk, j
∂lkine

∂uk,i
−

q∑
j=1

φ j
∂lkine

∂u j,i
− ξi lkine, (30)

see e.g. [5], with lkine the kinetic Lagrangian density, defined in the general thermodynamic setting exposed in the
previous section as

lkine =
∑

k

λk

(
żk − ∂ D∗(A)

∂ Ak

)
≡ 0. (31)

Recall that the arguments of the dependent variables of the kinetic Lagrangian, viz. the variables uk , are internal
variables. For a uniform elementary representative volume element (over which the kinetic Lagrangian density is
being integrated), only the time derivative appears in the previous conservation-law expression.

The search for generalized conservation laws associated with dissipative balance equations is an aspect under
current development, that will not be considered in the present contribution.

2.5 Application: construction of the master curve of a dry polyamid (PA66) (Phase DM-P3 → DM-P5)

The direct problem listed in the introductory part of this paper involves the calculation of the Lie symmetries for
the BVP on a uniform RVE, for which the constitutive law is the field equation to be analyzed. The corresponding
invariants will further be translated into master curves, as explained below. The constitutive model set-up presently
for the purpose of uniaxial tests involves the strain ε as control variable, and the stress σ as the corresponding
observable variable. The temperature T , dual of the entropy s, plays the role of a parameter. The internal variables
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Relevance of symmetry methods in mechanics of materials 111

zk and the thermodynamic affinities Ak are not controlled; their values in the relaxed state are governed by the
strain history. The exploitation of the general constitutive equations (5) and (10) leads to the following state law
(see [30]):

σ̇ − Eu ε̇ +
n∑

k=1

b1
k

zk − zr
k

τk
= 0, −ṡ + αu Eu ε̇ +

n∑
k=1

b2
k

zk − zr
k

τk
= 0,

− Ȧi − b1
i ε̇ +

n∑
k=1

gik
zk − zr

k

τk
= 0, i = 1, . . . , n (32)

with Eu the constant instantaneous Young’s modulus, b1
k , αu (dilatation coefficients), b2

k , and gik being defined
from the second-order partial derivatives of the Helmholtz free energy; see [31]. The simplest evolution model for
the internal variables is

zr
k = ckε. (33)

If one starts from a particular expression of the kinetic laws, involving a temperature dependence of the relaxation
times of the Arrhenius kind, the following kinetic model may be written as

żk + zk − ckε

h
kT exp

(
H−T Sk

RT

) = 0, (34)

where h is the Planck constant, k the Boltzmann constant, R the gas constant, ck , H , Sk some material constants.
The required symmetry condition can accordingly be expressed as

pr(1)v

⎛
⎝żk + zk − ckε

h
kT exp

(
H−T Sk

RT

)
⎞
⎠ = 0. (35)

The particular solution is obtained as

v0 = ξ
∂

∂t
+ φT ∂

∂T
+ φσ ∂

∂σ
+ φs ∂

∂s
+ φAk

∂

∂ Ak
(36)

with:

ξ = t; φT = − RT 2

RT + H
; φσ = −αu EuφT ; φAk = −b2

k ; φT ; φε = 0; φzk = 0. (37)

This solution is further interpreted as a mathematical formulation of the so-called time–temperature equivalence
principle for polymers. The integration of the induced first-order differential system leads to a one-parameter group
of transformations, where the temperature is transformed as

T̄ = exp

(
LW

(
H

R
exp

(
µT − T log(T ∗) + H

R

T

))
−µ + log T ∗ − H

RT

)
(38)

with LW (x) the Lambert function, and T ∗ = T/T0 with T0 = 1 K. The theoretical shift factor is obtained by
inverting the previous implicit relation:

µ(T, T̄ )

log 10
= H(T − T̄ )

RT T̄ log 10
+ 1

log 10
log

T

T̄
. (39)

This explicit expression of the group parameter µ(T, T̄ ) highlights an invariance property satisfied by the secant
modulus Es(t, T ), which is defined as the ratio of the stress to the strain:

Es(t, T ) = σ(t, T )

ε(t, T )
. (40)

Indeed, it can be readily shown that:

Es(t, T ) = σ(t, T )

ε(t, T )
= σ̄ (t̄, T̄ )

ε̄(t̄, T̄ )
= Es(t̄, T̄ ) = Es(e

µt, T̄ ) (41)
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leading to the logarithmic expression

log10 t̄ = log10 t + µ

log 10
(42)

allowing to rewrite (41) as:

Es(log10 t, T ) = Es

(
log10 t + µ

log 10
, T̄

)
. (43)

This relation links the two secant modulus Es(log10 t̄, T̄ ) and Es(log10 t, T ) obtained at T̄ and T by a trans-
lation of factor µ

log 10 on the time logarithmic scale. This translation factor µ
log 10 is given explicitly in Eq. 39. In

fact, the obtained invariance property is nothing but a theoretical formulation of the time–temperature equivalence
principle (abbreviated as TTEP). The latter was successfully confirmed by experimental data on various materials,
and fitted with empiric relationships such as the Williams–Landel–Ferry (WLF) expression (see e.g. [32–34]) or
the Kohlrausch relation ([35–37]).

As an illustration of the TTEP, and referring to the experimental validation of the predicted shift factor
(DM-P5), let us consider the data summarized in Fig. 2. The evolution of the secant modulus Es(t, T ) for iso-
thermal tests on a polymer (polyamid 66, PA66) is plotted at different constant temperatures and for a given strain
rate (ε̇ = 1.8 × 10−4 s−1). Every curve is parameterized by the temperature T̄ (in the range 413–453 K) and can be
translated along the log10 t axis with a horizontal shift factor aT̄ →T to coincide with a unique curve. This unique
curve is called “master curve” at the reference temperature T = 393 K; see Fig. 3.

This property has been stated by Williams, Landel and Ferry as the following empirical rule:

Es(log10 t, T ) = Es(log10 t + log10 aT̄ →T , T̄ ), (44)

which is nothing but the reformulation of (43) with log10 aT̄ →T ≡ µ
log 10 . The expression of the WLF shift factor is

log10 aT̄ ,T = − C1(T̄ − T )

C2 + T̄ − T
(45)

with C1 and C2 some material constants. The comparison between the WLF and the predicted shift factor (Eqs. 45,
and 39) for the dry polyamid (PA66) given in Fig. 4 shows a good agreement between the proposed predictive
method and the empirical WLF approach.
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Fig. 4 Comparison
between the shift factor
expressed by WLF
empirical model and the
present model, from [31]
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It can be noticed that the Direct Method exposed in this section may be extended to more complicated constitutive
laws including complex nonlinearities. This is the object of the next section.

2.6 Towards an extension of the Direct Method

The previous methodology (DM) has clearly shown its efficiency for predicting and formulating master curves,
providing a set of constitutive equations. Nevertheless, the algorithm may be generalized to a class of constitutive
equations. More precisely, if a general class of behaviors is considered, that is, if they are written in terms of
generic functions, the search of the associated Lie groups allows a classification of symmetries depending on the
mathematical structure of these functions. This may result in (i) a synthetic calculation of master curves belonging
to the same “family”, and (ii) the prediction of master curves in a broader constitutive framework (e.g. nonlinear
elasticity, viscoplasticity, etc). The algorithm of this Extended Direct Method, synthesized in the diagram of Fig. 5,
has been recently applied to the case of nonlinear elastodynamics in [14] and, in the same manner, to the case of
non-local elasticity in [38].

For a given system of PDEs, a symmetry classification can be done with respect to point symmetries or non-
local symmetries with generators depending on nonlocal variables. Those nonlocal variables—also coined potential
variables—arise from conservation laws admitted by a given system of differential equations: each conservation
law introduces one auxiliary potential variable, which is nonlocally related to the original dependent variables; see
[39–42] in the context of wave equations. Extension of this method to the construction of a hierarchy of nonlocally
related systems can be achieved by introducing new potential variables, one for each new conservation law of each
potential system. Furthermore, one may obtain nonlocally related subsystems by excluding dependent variables
from the potential system. This allows the construction of a whole tree of nonlocally related potential systems and
subsystems originating from a given system of DEs [41]. Finding trees of potential systems is important when
arbitrary constitutive functions are present in the original set of differential equations. In the present context, those
functions govern the motion, strain and rheological properties of some class of materials. For different forms of the
constitutive functions, the sets of conservation laws and subsequent trees of related potential systems and subsystems
may be different.

As already pointed out, one can systematically calculate nonlocal symmetries according to the constitutive model,
allowing the construction of invariants (new conservation laws can be obtained) and new solutions (linearization of
the set of original DEs is even sometimes possible). Moreover, any general method of analysis for a given set of DEs
may be tried on nonlocally related potential systems or subsystems, since those subsystems include all solutions of
the original system.

As an illustration of those concepts and methods, nonlocally related PDE systems for one-dimensional nonlinear
elastodynamics have been formulated in [14], and point symmetries of PDE systems of dynamical nonlinear elas-
ticity have been classified with respect to constitutive and loading functions (body force). For physically realistic
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constitutive functions, new closed-form dynamical solutions have been constructed from symmetry reduction of the
PDE system under nonlocal symmetries, viz. symmetries involving nonlocal variables. In order to illustrate those
ideas, let us consider a one-dimensional situation; the Euler equations of motion read (x and t are the independent
variables):

E{x, t; v, σ, ρ} = 0 :
⎧⎨
⎩

ρt + (ρv)x = 0,

σx + ρ f (x, t) = ρ(vt + vvx ),

σ = K (ρ),

(46)

where ρ, v, σ are the density, velocity and Cauchy stress, respectively. The third relation in (46) represents the
constitutive law involving an arbitrary function K (ρ). The body force f (x, t) is considered as an arbitrary loading
function, in accordance with the Phase EDM-P1 (see Fig. 5). The conservation of mass—first relation in Eq. 46—
introduces a potential variable w; hence a new nonlocally related PDE system can be constructed:

EW{x, t; v, σ, ρ,w} = 0 :

⎧⎪⎪⎨
⎪⎪⎩

wx = ρ,

wt = −ρv,

σx + ρ f (x) = ρ(vt + vvx ),

σ = K (ρ).

(47)

It is clear from the last system that w is nonlocally related to the mass and the velocity. An integration is thus
needed for its evaluation.

Considering materials endowed with dissipation, a symmetry classification of constitutive laws belonging to a
broader class (viscoelastic, viscoplastic) is a promising perspective of the Extended Direct Method. Indeed, the
general form of the constitutive law involves arbitrary functions of the strain, strain rate and a set of internal vari-
ables related to dissipation. As the complexity of the set of governing DEs is increased—due to the nonlinearity of
the constitutive law in the considered broader class—the use of potential variables would simplify the finding of
solutions and invariance relations (Phase EDM-P3).

In the next section, the inverse problem of symmetry analysis listed in the introductory section will be studied.

3 The inverse method: determination of the material’s constitutive law from experimental data
and Lie symmetries

3.1 The IM algorithm

As discussed in the introductory section, the inverse problem involves the construction of a possible constitutive law
for the material. This method is based on a search of symmetry groups coming from experimental data of suitable
mechanical testings. More precisely, the algorithm consists in the following consecutive steps:

• Obtain empirically master curves from the whole set of experimental data, and express these master curves in
terms of Lie groups of generators v

exp
i , i = 1, . . . , n (Phases IM-P1 to IM-P3);

• Choose a general expression for the constitutive equation, formally expressed as a relationship between (for
instance) the Cauchy stress, the Henky strain and the associated strain rate, e.g.:

(σ, ε, ε̇) = σ − f (ε, ε̇) = 0, (48)

where f (ε, ε̇) is an unknown function;
• Apply the symmetry condition ([5]):

v
exp
i  = 0 whenever  = 0 (49)

for all generators v
exp
i found in IM-P3, in order to specify the form of the general function f (ε, ε̇) (Phase IM-P4

to Phase IM-P6). From a physical viewpoint, Eq. 49 means that the same constitutive law holds for all considered
values of the (varying) loading parameters. Otherwise stated, one looks for a model of the constitutive laws
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P1.  THERMODYNAMICAL FRAMEWORK
FOR CONTINUOUS MEDIA

boundary-value problem + general
formulation of a class of constitutive equations
(e.g. non−linear elasticity, viscoplasticity,....)

P2.  SYMMETRY ANALYSIS (LIE-GROUPS THEORY)

P6.  IDENTIFICATION OF PARAMETERS

P5.  EXPERIMENTAL DATA

physical properties
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material behavior

P4.  EXPERIMENTS

controlled loading paths

(selected controlled and 
                           observed state variables)

P3.  SYMMETRY CLASSIFICATION

equivalence principles

group invariant solutions

conservation laws

(according to constitutive functions)

Fig. 5 Diagram associated with the Extended Direct Method

physical properties

dependent & independent variables

material behavior

controlled loading paths

(selected controlled and 
                           observed state variables)

theoretical coherence of the expected groups
(axioms, Lie algebra structure)

Fig. 6 Diagram associated with the Inverse Method

that satisfies the symmetries obtained from the experimental responses. The constructed equations have to be
admissible from a thermodynamical point of view; hence this gives an additional criterium to be checked (IM-P5
and IM-P6 as a loop).

Those steps are condensed into the diagram of Fig. 6.
As an illustration of this algorithm, let us consider the case of a stick-like material. The constitutive equations

are defined as unknown functions of mechanical variables such as the stress, strain and strain rate. They are fully
determined considering the invariance of the constitutive model with respect to the identified symmetry groups.

3.2 Application: formulation of a Lie group for acrylic sticks from experimental data (Phases IM-P1 → IM-P4)

The cylindrical acrylic stick specimens are submitted to compressive dynamic tests, in accordance with the exper-
imental device depicted in Fig. 7. A unit mass (1 kg) is dropped with no initial velocity from a height H0 to impact
the upper plate of a compression device onto contact with the specimen.

The displacement δ(t) of the upper plate (relative to the lower plate) and the applied load are measured during
impact; hence the Cauchy stress σ(t), the Henky strain ε(t), and the strain rate ε̇(t) can be evaluated from those
data using the following relations:

σ(t) = F(t)h(t)

S0h0
; ε(t) = log

h(t)

h0
; ε̇ = ḣ(t)

h(t)
(50)

with h(t) = h0 − δ(t) the actual specimen thickness, assuming that the total volume of the specimen is constant
during the compression (V (t) = S(t)h(t) = S(t = 0)h(t = 0) = S0h0). This is a consequence of the local
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Fig. 7 Schematic representation of the weight drop tests, from
[30]
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incompressibility, which is a reasonable assumption for such polymers. Five series of dynamic compressive tests
have been carried out with this protocol, considering initial heights from 15 to 90 cm. Since the impact velocity
increases with the drop height, this amounts to considering different strain rates.

The experimental data obtained in the phase plane (ε, ε̇) and in the strain–stress plane (ε, σ ) for the five values
of H0 may be condensed in both planes into two master curves by means of suitable transformations. Those master
curves reveal a superposition of the measured sets of data obtained for different values of the drop height, which is
the varying parameter H0. For H0 = 90 cm as a reference height, shift factors ax→90, x = 15, 30, 50, 60 such that{

ε90(t) = ax→90εx (t)
ε̇90(t) = ax→90ε̇x (t)

(51)

have been graphically determined by a translation along the vector (1, 1) in the logarithmic plane (log ε, log ε̇∗),
with ε̇∗ the dimensionless strain rate; see the Fig. 8. Similarly, the Cauchy stress versus Henky strain responses have
been synthesized into master responses involving the affine transformation

log

(
σ ∗

90

σ ∗
0

)
= bx→90 log

(
σ ∗

x

σ ∗
0

)
, (52)

where the five constant bx→90 for x = 15, 30, 50, 60, and σ ∗
0 have also been graphically determined. The master

curve revealing the stress–strain responses when the drop height varies is shown in Fig. 9.
The values of the measured shift factors ax→90 and bx→90 for x = 15, 30, 50, 60 are given in Tables 1 and 2

respectively, defining the additional trivial values a90→90 = 1 and b90→90 = 1; they are to be used to obtain the
formulation of a Lie group. Considering a one-parameter group of transformations, an exponential adjustment of
the shift factors bx→90 versus log ax→90 is found suitable:

bx→90 = βeα log ax→90 with β = 1.045, α = 1.687, R2 = 0.9924. (53)

Table 1 Values of shift
factors log ax→90, from [30]

Parameter log a15→90 log a30→90 log a50→90 log a60→90 log a90→90

Value 0.52 0.36 0.36 0.22 0

Table 2 Values of
parameters bx→90 and σ ∗

0 ,
from [30]

Parameter b15→90 b30→90 b50→90 b60→90 b90→90 σ ∗
0 (Pa)

Value 2.48 1.97 1.53 1.53 1 59,900
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Finally, denoting µx = log ax→90 and considering Eq. 51 and the exponential of (52), the Lie group associated
with experiments at varying heights writes:

ε̄ = eµε (54)
¯̇ε∗ = eµε̇∗ (55)

σ̄ ∗

σ ∗
0

=
(

σ ∗

σ ∗
0

)βeαµ

. (56)

This group expresses the correspondence between (ε, ε̇∗, σ ∗) and (ε̄, ¯̇ε∗, σ̄ ∗) for two different values of H0.

3.3 Formulation of the constitutive equations (Phase IM-P5)

Using the obtained Lie group, one further evaluates the constitutive law from the previous symmetry condition (49)
applied to Eq. 48, accounting for the generator of the group, viz:

vexp = ε
∂

∂ε
+ ε̇∗ ∂

∂ε̇∗ + ασ ∗ log

(
σ ∗

σ ∗
0

)
∂

∂σ ∗ . (57)

The final form of the constitutive relation between the stress, the strain and strain rate reads

σ = σ0

(
c1

( ε

ε̇∗
)c2

)(ε̇∗)α
, (58)

with σ0 = σ ∗
0 × 1 Pa and α = 1.687, see [30] for the complete calculation. The material parameters c1, c2 are

estimated from the adjustment of the formulated constitutive model with the measurements, in a least-squares sense:

c1 = 1.05, c2 = 0.053. (59)

The range of validity of the developed model has to be explored with further experimental data obtained at both
lower and higher strain rates than those used in the present study. Predictions of the constitutive model will then be
compared with those measurements, in order to assess the relevance of the extrapolation of the proposed constitutive
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law to a wider range of strain rates. The power of the modelling strategy presented here lies in its ability to account
for a set of experimental data in a synthesized manner. Indeed, all experimental data are summarized in a Lie group,
which allows to efficiently determine the form of the constitutive equation.

4 Concluding remarks and perspectives

Lie symmetries can be used as a powerful tool in Mechanics of Materials, as highlighted by the previous devel-
opments and examples. First it was shown (in the Direct Method section) that a Lagrangian relying on a given
kinetic information is able to bring out variational symmetries. Accounting for the expression of the associated
pseudo-potential, such a symmetry analysis may be a promising tool to predict the existence of master curves. The
method has next been extended to some class of constitutive equations, written in terms of unknown functions
describing the loading path or the material behavior. This generalized algorithm (called Extended Direct Method)
consists of a classification of symmetries with respect to the unknown functions. It results in an efficient calculation
of master curves that can be carried out in a broader constitutive framework.

In the second part of the paper, it has been evidenced that Lie symmetries may be used as an interpolation
method, called here the Inverse Method. In the first step of the algorithm, one looks for one or several Lie sym-
metries formulated from experimental master curves. Next, the subsequent symmetry conditions are applied to a
general expression of the constitutive equations involving some unknown functions. This results in a PDE system
satisfied by these unknown functions. The solution of the system and the confrontation of the obtained constitutive
equations with experimental data give an idea on the relevance of the model.

Both previous analyses (Direct and Inverse Methods) will be carried out in a more systematic manner in the
future, in particular for nonlinear and dissipative constitutive models (e.g. plasticity, viscoplasticity of materials).
Furthermore, work in the background of the Inverse Method is in progress, with the aim of identifying constitutive
laws for a wide range of materials under various loading conditions. Complementary to that, invariants of the
associated BVPs (i.e., conservation laws) can be calculated in the framework of the Extended Direct Method. In
nonlinear Continuum Mechanics, those invariants may be used to develop suitable numerical schemes that preserve
the invariance condition along the solution path.
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